## Particular Solutions to the Time-Fractional Heat Equation

# Simon Kelow Northern Arizona University 

Mentor: Kevin Hayden

## What is Fractional Calculus?

Calculus: $D_{x}^{n} f(x)=\frac{d^{n} f}{d x^{n}}$ for any $n \in \mathbb{N}$

## What is Fractional Calculus?

Calculus: $D_{x}^{n} f(x)=\frac{d^{n} f}{d x^{n}}$ for any $n \in \mathbb{N}$

Fractional Calculus: $D_{x}^{\alpha} f(x)=\frac{d^{\alpha} f}{d x^{\alpha}}$ for any $\alpha \in \mathbb{C}$

## What is Fractional Calculus?

Calculus: $D_{x}^{n} f(x)=\frac{d^{n} f}{d x^{n}}$ for any $n \in \mathbb{N}$

Fractional Calculus: $D_{x}^{\alpha} f(x)=\frac{d^{\alpha} f}{d x^{\alpha}}$ for any $\alpha \in \mathbb{C}$

Thus fractional calculus extends the derivative operator into a continuous operator.

## Example: Fractional Derivative of $e^{r t}$

## Calculus:

$$
D_{t}\left[e^{r t}\right]=r e^{r t}
$$

## Example: Fractional Derivative of $e^{r t}$

## Calculus:

$$
\begin{gathered}
D_{t}\left[e^{r t}\right]=r e^{r t} \\
D_{t}^{2}\left[e^{r t}\right]=r^{2} e^{r t}
\end{gathered}
$$

## Example: Fractional Derivative of $e^{r t}$

## Calculus:

$$
\begin{gathered}
D_{t}\left[e^{r t}\right]=r e^{r t} \\
D_{t}^{2}\left[e^{r t}\right]=r^{2} e^{r t} \\
\vdots \\
D_{t}^{n}\left[e^{r t}\right]=r^{n} e^{r t}, n \in \mathbb{N}
\end{gathered}
$$

## Example: Fractional Derivative of $e^{r t}$

## Calculus:

$$
\begin{gathered}
D_{t}\left[e^{r t}\right]=r e^{r t} \\
D_{t}^{2}\left[e^{r t}\right]=r^{2} e^{r t} \\
\vdots \\
D_{t}^{n}\left[e^{r t}\right]=r^{n} e^{r t}, n \in \mathbb{N}
\end{gathered}
$$

Fractional Calculus:

$$
D_{t}^{\alpha}\left[e^{r t}\right]=r^{\alpha} e^{r t}, \alpha \in \mathbb{C}
$$

## Heat Equation: PDE vs FDE

$\operatorname{PDE}: \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad$ or $\quad D_{t} u=D_{x}^{2} u$

## Heat Equation: PDE vs FDE

PDE: $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad$ or $\quad D_{t} u=D_{x}^{2} u$
FDE: $D_{t}^{\alpha} u=D_{x}^{2} u$ where $\alpha \in[1-\delta, 1+\delta] \subset \mathbb{R}$

## Heat Equation: PDE vs FDE

PDE: $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad$ or $\quad D_{t} u=D_{x}^{2} u$
FDE: $D_{t}^{\alpha} u=D_{x}^{2} u$ where $\alpha \in[1-\delta, 1+\delta] \subset \mathbb{R}$

Initial-Boundary-Value Problem:
Object: One dimensional rod of length $L$

## Heat Equation: PDE vs FDE

PDE: $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad$ or $\quad D_{t} u=D_{x}^{2} u$
FDE: $D_{t}^{\alpha} u=D_{x}^{2} u$ where $\alpha \in[1-\delta, 1+\delta] \subset \mathbb{R}$

Initial-Boundary-Value Problem:
Object: One dimensional rod of length $L$
Boundary Conditions: $u(t, 0)=u(t, L)=0$

## Heat Equation: PDE vs FDE

PDE: $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad$ or $\quad D_{t} u=D_{x}^{2} u$
FDE: $D_{t}^{\alpha} u=D_{x}^{2} u$ where $\alpha \in[1-\delta, 1+\delta] \subset \mathbb{R}$

Initial-Boundary-Value Problem:
Object: One dimensional rod of length $L$
Boundary Conditions: $u(t, 0)=u(t, L)=0$
Inital Conditon: $u(0, x)=\frac{-4 a}{L^{2}} x^{2}+\frac{4 a}{L} x$

## Solutions: PDE vs FDE

## PDE:

$$
u(t, x)=\sum_{n=0}^{\infty} \frac{32 a}{\pi^{3}(2 n+1)^{3}} \sin \left(\frac{(2 n+1) \pi}{L} x\right) e^{\frac{-(2 n+1)^{2} \pi^{2}}{L^{2}} t}
$$

## Solutions: PDE vs FDE

PDE:

$$
u(t, x)=\sum_{n=0}^{\infty} \frac{32 a}{\pi^{3}(2 n+1)^{3}} \sin \left(\frac{(2 n+1) \pi}{L} x\right) e^{\frac{-(2 n+1)^{2} \pi^{2}}{L^{2}} t}
$$

## FDE:

$$
u(t, x)=\sum_{n=0}^{\infty} \frac{32 a}{\pi^{3}(2 n+1)^{3}} \sin \left(\frac{(2 n+1) \pi}{L} x\right) e^{\frac{\alpha}{\frac{-(2 n+1)^{2} \pi^{2}}{L^{2}}} t}
$$

## Heat Equation: PDE vs FDE



## Heat Equation: PDE vs FDE



## Thank You. Any Questions?



Thanks to:
NAU/NASA Space Grant
AZ Space Grant Consortium
Kevin Hayden - Project Mentor
Nadine Barlow \& Kathleen Stigmon

