Particular Solutions to the Time-Fractional Heat Equation

Simon Kelow Northern Arizona University

Mentor: Kevin Hayden

What is Fractional Calculus?

Calculus:
$$D_x^n f(x) = \frac{d^n f}{dx^n}$$
 for any $n \in \mathbb{N}$

< E> < E

What is Fractional Calculus?

Calculus:
$$D_x^n f(x) = \frac{d^n f}{dx^n}$$
 for any $n \in \mathbb{N}$

Fractional Calculus:
$$D_x^{\alpha} f(x) = \frac{d^{\alpha} f}{dx^{\alpha}}$$
 for any $\alpha \in \mathbb{C}$

< E> < E

What is Fractional Calculus?

Calculus:
$$D_x^n f(x) = \frac{d^n f}{dx^n}$$
 for any $n \in \mathbb{N}$

Fractional Calculus:
$$D_x^{\alpha} f(x) = \frac{d^{\alpha} f}{dx^{\alpha}}$$
 for any $\alpha \in \mathbb{C}$

Thus fractional calculus extends the derivative operator into a continuous operator.

Calculus:

 $D_t \left[e^{rt} \right] = re^{rt}$

• = • • = •

Calculus:

$$D_t\left[e^{rt}\right] = re^{rt}$$

$$D_t^2\left[e^{rt}\right] = r^2 e^{rt}$$

留 と く ヨ と く ヨ と

Э

Calculus:

$$D_t\left[e^{rt}\right] = re^{rt}$$

$$D_t^2 \left[e^{rt} \right] = r^2 e^{rt}$$
$$\vdots$$
$$D_t^n \left[e^{rt} \right] = r^n e^{rt}, \ n \in \mathbb{N}$$

□▶★■▶★■▶

э

Calculus:

$$D_t\left[e^{rt}\right] = re^{rt}$$

$$D_t^2 \left[e^{rt} \right] = r^2 e^{rt}$$
$$\vdots$$
$$D_t^n \left[e^{rt} \right] = r^n e^{rt}, \ n \in \mathbb{N}$$

Fractional Calculus:

$$D_t^{\alpha}\left[e^{rt}\right] = r^{\alpha}e^{rt}, \ \alpha \in \mathbb{C}$$

A E > A E >

PDE:
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 or $D_t u = D_x^2 u$

→ Ξ → → Ξ

PDE:
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 or $D_t u = D_x^2 u$

FDE: $D_t^{\alpha} u = D_x^2 u$ where $\alpha \in [1 - \delta, 1 + \delta] \subset \mathbb{R}$

伺い くほい くほう 二日

PDE:
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 or $D_t u = D_x^2 u$

FDE:
$$D_t^{\alpha} u = D_x^2 u$$
 where $\alpha \in [1 - \delta, 1 + \delta] \subset \mathbb{R}$

Initial-Boundary-Value Problem: Object: One dimensional rod of length L

- 4 B b 4 B b

PDE:
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 or $D_t u = D_x^2 u$

FDE:
$$D_t^{\alpha} u = D_x^2 u$$
 where $\alpha \in [1 - \delta, 1 + \delta] \subset \mathbb{R}$

Initial-Boundary-Value Problem: Object: One dimensional rod of length *L* Boundary Conditions: u(t,0) = u(t,L) = 0

PDE:
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 or $D_t u = D_x^2 u$

FDE:
$$D_t^{\alpha} u = D_x^2 u$$
 where $\alpha \in [1 - \delta, 1 + \delta] \subset \mathbb{R}$

Initial-Boundary-Value Problem: Object: One dimensional rod of length L Boundary Conditions: u(t,0) = u(t,L) = 0Initial Condition: $u(0,x) = \frac{-4a}{L^2}x^2 + \frac{4a}{L}x$

Solutions: PDE vs FDE

PDE:

$$u(t,x) = \sum_{n=0}^{\infty} \frac{32a}{\pi^3 (2n+1)^3} \sin\left(\frac{(2n+1)\pi}{L}x\right) e^{\frac{-(2n+1)^2\pi^2}{L^2}t}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

э

Solutions: PDE vs FDE

PDE:

$$u(t,x) = \sum_{n=0}^{\infty} \frac{32a}{\pi^3 (2n+1)^3} \sin\left(\frac{(2n+1)\pi}{L}x\right) e^{\frac{-(2n+1)^2\pi^2}{L^2}t}$$

FDE:

$$u(t,x) = \sum_{n=0}^{\infty} \frac{32a}{\pi^3 (2n+1)^3} \sin\left(\frac{(2n+1)\pi}{L}x\right) e^{\sqrt[\alpha]{\frac{-(2n+1)^2\pi^2}{L^2}t}}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

э

Simon Kelow Northern Arizona University

Particular Solutions to the Time-Fractional Heat Equation

Simon Kelow Northern Arizona University Particular Solutions to the Time-Fractional Heat Equation

Thank You. Any Questions?

Thanks to: NAU/NASA Space Grant AZ Space Grant Consortium Kevin Hayden - Project Mentor Nadine Barlow & Kathleen Stigmon